13 research outputs found

    Cooper pairing near charged black holes

    Full text link
    We show that a quartic contact interaction between charged fermions can lead to Cooper pairing and a superconducting instability in the background of a charged asymptotically Anti-de Sitter black hole. For a massless fermion we obtain the zero mode analytically and compute the dependence of the critical temperature T_c on the charge of the fermion. The instability we find occurs at charges above a critical value, where the fermion dispersion relation near the Fermi surface is linear. The critical temperature goes to zero as the marginal Fermi liquid is approached, together with the density of states at the Fermi surface. Besides the charge, the critical temperature is controlled by a four point function of a fermionic operator in the dual strongly coupled field theory.Comment: 1+33 pages, 4 figure

    Kitaev's quantum double model from a local quantum physics point of view

    Full text link
    A prominent example of a topologically ordered system is Kitaev's quantum double model D(G)\mathcal{D}(G) for finite groups GG (which in particular includes G=Z2G = \mathbb{Z}_2, the toric code). We will look at these models from the point of view of local quantum physics. In particular, we will review how in the abelian case, one can do a Doplicher-Haag-Roberts analysis to study the different superselection sectors of the model. In this way one finds that the charges are in one-to-one correspondence with the representations of D(G)\mathcal{D}(G), and that they are in fact anyons. Interchanging two of such anyons gives a non-trivial phase, not just a possible sign change. The case of non-abelian groups GG is more complicated. We outline how one could use amplimorphisms, that is, morphisms A→Mn(A)A \to M_n(A) to study the superselection structure in that case. Finally, we give a brief overview of applications of topologically ordered systems to the field of quantum computation.Comment: Chapter contributed to R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason (eds), Advances in Algebraic Quantum Field Theory (Springer 2015). Mainly revie

    Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

    Full text link
    Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry

    Topological quantum computing with Read-Rezayi states.

    Get PDF
    Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which, in principle, can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with k>2, k not equal 4. This work extends previous results which only applied to the case k=3 (Fibonacci) and clarifies why, in that case, gate constructions are simpler than for a generic Read-Rezayi state

    Spin-orbit coupling and spirals in doped La2CuO4

    No full text
    Spin-orbit coupling in doped La2CuO4 can result in (1) a novel electron-phonon coupling involving soft oxygen tilting phonons, and (2) stabilization of a commensurate antiferromagnetic state over a spiral state in the presence of a sufficiently large tilt distortion. This second effect may be responsible for the unusual electronic properties of La1.88Ba0.12CuO4. © 1992 The American Physical Society.link_to_subscribed_fulltex

    Quantum computing with non-Abelian quasiparticles

    No full text
    In topological quantum computation quantum information is stored in exotic states of matter which are intrinsically protected from decoherence, and quantum operations are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum operations depend only on the topology of the braids formed by these world-lines. We describe recent work showing how to find braids which can be used to perform arbitrary quantum computations using a specific kind of quasiparticle (those described by the so-called Fibonacci anyon model) which are thought to exist in the experimentally observed v = 12/5 fractional quantum Hall state. © World Scientific Publishing Company
    corecore